
© Copyright TSD (UK) Ltd 2014 

Introducing: 

 

z/OS Unix Security needs 

fixing, where do I start ? 

Paul Arnerich 

May 2015 

(minor update May 2016) 

 

Contact: 

Paul.Arnerich@tsdd.co.uk   

mailto:Paul.Arnerich@tsdd.co.uk


© Copyright TSD (UK) Ltd  2014 

Abstract and Legal Stuff 

 Abstract 

 For many z/OS customers, z/OS Unix Security has been rising up the priority list due in 
part to audit findings showing need for improvement and in some cases, years of low 
priority for this complex area of security management leaving a long list of challenges 
that need resolving.  For some customers, the complexity has meant that there is a lack 
of clarity as to where to begin the remedial work, this session will look at the common 
areas of concern and propose strategies for both tactical (quick fix) and strategic (long 
term) remedial activities.  

 
 Trademarks 

 POSIX® is a registered trademark of the IEEE. 

 IBM® is a registered trademark of International Business Machines Corporation. 

 The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both: 

• DB2®, IBM®, MVS™, RACF®, RMF™, WebSphere ®, System z ®, z/OS ® 

 UNIX is a registered trademark of The Open Group in the United States and other countries. 

 Other company, product and service names may be trademarks or service marks of others. 

 
 

 

All rights reserved. This document may not be reproduced in whole  

or in part without the prior written permission of TSD (UK) Ltd 

 

2/50 



© Copyright TSD (UK) Ltd  2014 

Agenda 

 Background to the session 

 Assumptions 

 Why me 

 Why z/OS Unix on z/OS 

 

 State of Play for most customers 

 Status Check 

 Governance issues 

 

 z/OS Unix and the Security Policy 

 You will need one of these  

• It’s a stick not a carrot 

 

 Remedial actions hit list 

 Pre-requisites, plans and resources 

 UID Scheme, UID(0), BPX.DEFAULT.USER 

 Files/directories – normal ownership and unowned 

 BPX.SUPERUSER, BPX.DAEMON and UNIXPRIV 

 ACLs 

 

 
3/50 



© Copyright TSD (UK) Ltd  2014 

Assumptions 

 This is a technical topic 

 I assume you have a good grounding in z/OS Unix 

 This is focused on z/OS Unix within the context of Security 

 I assume you have a good grounding in z/OS Security 

 There are External Security Managers other than RACF 

 However, for the sake of simplicity, this presentation uses RACF terminology 

 Top Secret and ACF2 people, please translate 

 I’m English and speak the “Queen’s English” 

 Speakers of other forms of English will have to do the translation in terms of smelling 
and grammar 

 There may be some observations that may not be fully understood in certain 
geographies, apologies 

 Some phrases 

 ESM – External Security Manager (RACF, Top Secret or ACF2) 

 AOC – Area of Concern 

 SMP – Somebody else’s problem 

 NMP – Not my problem 

 z/OS Unix is the ‘approved’ short form of z/OS Unix System Services 

• Not USS ! 

 

4/50 



© Copyright TSD (UK) Ltd  2014 

Why me ? 

 Because I was asked to by the UK Guide Share Europe team a while back 

 The community has this as a hot topic 

 

 Because I'm old          

 (Not a bad likeness in a certain light) 

 

 Because if you cut me in half, you will find a z 

 I've been a 'doing' z for a long time. Seen o, m and v come and go 

 I’ve been ‘doing’ z/OS Unix for a long time 

• Rolled out Open Edition back in MVS/ESA v4.3 (1993) 

• Ran like a dog with three legs from memory 

 

 Because I have some experience of z/OS Unix 

 Didn’t take “one step back” at the right time 

 For my sins I have been heavily involved in most of the WebSphere Application Server 
implementations in EMEA 

• WebSphere Application Server is a big z/OS Unix exploiter 

 Contributed to the z/OS Unix related Security Policies at EMEA customers 

• Because of all the above 

5/50 



© Copyright TSD (UK) Ltd  2014 

Why z/OS Unix 

 Original reasons – mid 90’s 

 FIPS 151-2 in 1991, stated all suppliers to US government must be POSIX compliant 

 Market Share 

 The need to be ‘Open’ 

 Long term, the vision of having the capability to port UNIX apps to z/OS 

• win back some server business 

 Rebranding ‘MVS’ as  a Server 

 Harsh reality 

 Fewer mainframe system and subsystem programmers around 

 Diminishing Assembler skills in IBM and Vendor labs 

 Increased ‘C-like’ skills in IBM and Vendor labs 

• The available talent pool know C and think in C system calls 

 Large percentages of sub-systems and operating system coded as ‘C-like’ 

• using z/OS Unix syscalls for access to resources for access to memory and data 

 

 

6/50 

Sysprog 



© Copyright TSD (UK) Ltd  2014 

z/OS Unix on z/OS today 

 It’s a pre-requisite for many z/OS products and services: 

 HTTP Serving 

 Domino 

 WebSphere Application Server, WebSphere everything else 

 TCP/IP 

 Java 

 SMP/E 

 DB2 

 XML Parsing 

 CICS/CTS, CTG 

 IMS 

 LDAP 

 Healthchecker 

 zOSMF 

 ….and many more 

 z/OS and z/OS Unix are meshed together 

 Can’t run z/OS without it 

 Can’t start TCP/IP without it 

 Not much else will run without it 

 

7/50 



© Copyright TSD (UK) Ltd  2014 

 

State of Play 

8/50 



© Copyright TSD (UK) Ltd  2014 

Categories of z/OS Unix customers 

 Two basic types: 

 z/OS Unix Savvy and Not z/OS Unix savvy 

 

 z/OS Unix Savvy customers 

 Run middleware layer that is dependent on z/OS Unix 

• WebSphere Application Server 

• SAP, Java exploiters, Domino 

• Web Serving, NFS 

 Attributes 

• Learnt the hard way that z/OS Unix security (and other bits) matter 

• Typically exploiter teams had the most knowledge 

 Implementation was generally suited to that team not necessarily the general population 

• May still have security issues to remedy 

 Residual effect of only treating the ‘stuff that matters’ 

 Often still have UID(0) issues 

 

 Not z/OS Unix savvy 

 Often ignored z/OS Unix as not relevant 

 Have the steepest curve to remedy 

• but probably the fewest users/resources affected 

 Frequently do not have procedures and policies in place for z/OS Unix 

Proton Savvy 

9/50 



© Copyright TSD (UK) Ltd  2014 

State of play 

 Sites failing audit (internal and external) due to z/OS Unix exposures 

 Auditors know more about Unix than they often do about z/OS 

• A generalisation, but often the case in my experience 

 Human nature dictates that they will put the effort into their comfort zone 

 

 Increased publicity of break-ins on z/OS 

 Increasingly publicly connected via TCP/IP 

• Means increased opportunity 

 Typically exploiting z/OS Unix weaknesses 

• cf. Logica break-in widely documented on t’internet 

 Obs: Swedish investigators managed to obtain 30,000 userid/password combos in 2 days from the 
Logica RACF database using a single PC and JTR 

 

 Increased reliance on z/OS Unix with each release of z/OS 

 New software stacks such as Healthchecker, zOSMF, etc.. 

 Old software stacks expanding with more ‘C’ based code 

• CICS, DB2, IMS, DFSMS 

 Any software install/implementation has z/OS Unix element 

• UIDs needed 

• FACILITY and UNIXPRIV profiles 

• Files, especially config type files 

 

 
10/50 



© Copyright TSD (UK) Ltd  2014 

z/OS Unix Infrastructure 

 Overall, “we” have not handled z/OS Unix security well 

 in some cases, not handled at all 

 How good a job did we do ? Generally a lousy job 

 not sure “our mothers would be proud of us” 

 How did we get here ? 

 Too busy, not enough focus, didn’t understand the severity 

 We were busy with other ‘stuff’, had other priorities 

 Ignorance 

• “what is z/OS Unix anyway and do we actually use it ?” 

 Lack of ownership of z/OS Unix amongst the technical teams 

• Often fell/falls between the cracks  

 Typically somewhere between z/OS team and Middleware teams 

• Which means it is a classic SEP 

 Somebody Else’s Problem 

 Often didn’t see it coming 

• And when we did, the head went into the sand 

 blah blah 

 Whatever, it is now time to “Man up” 

 Embrace the pain 

 Its not perfect, but now we get to start to improve it 

 

 
11/50 



© Copyright TSD (UK) Ltd  2014 

Key z/OS Unix Areas  

 z/OS Unix has 4 major areas of concern 

 AOC1 – Security 

 AOC2 - Performance and tuning 

• NMP (Not My Problem) ? 

• Yes and no 

 Most secure system is the one that is powered off whilst the best performing system is a the one 
with no security 

 We need to strike a business focused balance between these two extremes 

• Key security decisions for z/OS resources were made decades ago 

 Cost of those decisions has been in the hardware software calculations 

 New security hardening decisions need to be budgeted for in terms of performance  

 AOC3 – File Systems and Data Storage 

• NMP ? Yes and no 

 Decisions about data location (zFS versus Dataset) have security implications 

 AOC4 – Automation/Scheduling 

• NMP ? Yes and no 

 Security related review/audit/monitor will need batch processes 

 This is a Security session so focus will be on AOC1 

 But AOC 2/3/4 had better be in the plan 

 The zEngineering teams will need to be involved: 

• to action/implement some of the remedial actions 

• Provide infrastructure to support security efforts (automation/tools etc..) 

12/50 



© Copyright TSD (UK) Ltd  2014 

Governance Issues 

 In order to fix something, you have to know what is wrong 

 Most effective way of establishing this is to compare your System z Security Policy 
(zSP) to Actual 

 Requires you to have a zSP 

• One that specifically covers z/OS Unix as well as all the rest 

• Obs: should also cover TCPIP in depth, TCPIP and z/OS Unix entwined together in many ways 

• Obs: TCPIP often quite lightly handled in customers zSP, a bit of an SEP 

 Requires you to have software install/implementation guidance that covers z/OS Unix 

• Software installation template must have a z/OS Unix section 

 UID/GID requirements 

 File system level security requirements 

 File and directory level security requirements 

 Plus all the other non security related z/OS Unix requirements 

• Change Control template must have a z/OS Unix section 

• Security Change template must have a z/OS Unix section 

 Including authorisation requirements 

• New User request template must cater for z/OS Unix 

 OMVS Segment needed ? 

 GID requirement ? 

 BPX.???????? FACILITY class and UNIXPRIV class profiles ? 

 All this needs an integrated approach including the whole zEngineering community 

• You are going to have to actually speak to …..  ‘them’ 

 

 

 
13/50 



© Copyright TSD (UK) Ltd  2014 

 

USS and the 
Security Policy 

14/50 



© Copyright TSD (UK) Ltd  2014 

z Security Policy 

 A refresh on the System z Security Policy 

 Without one you are in trouble 

 Common Approach 

 Write a Policy based on requirements not based on actual 

 No ‘off the shelf’ solution, must be written to your requirements 

 Define all Resource Owners (RO) 

• Tough to do, can cheat a bit by declaring selected zEngineering teams as Proxy Authoriser (PA) 

• Authorisation requests can now be directed to the RO/PA 

 Responsibility (and accountability) lies with the RO/PA  

 Result is that Security team are not carrying the can, merely enacting the approved requirements of 
the logical owner of the resource 

 zSP must be signed off 

• Business units must collectively sign this, they will, this is now an SEP from their perspective, 
i.e. Your Problem 

 Compare zSP to Actual 

• Produces a work queue to check off 

• Expectation must be set that you will not match, you have only begun 

 Obs: The worse you compare at the beginning, the better your results looks 

 This is good, you can be measured as very successful very easily if things are very bad to start with 

 Categorise Policy non-compliant elements by: 

• Risk – some may be “within appetite” 

• Priority 

• Relative effort to remedy 

15/50 



© Copyright TSD (UK) Ltd  2014 

z Security Policy ….(cont.) 

 Next step is often to create a partner doc 

 zSID – z Security Implementation Document 

• Cut and paste the headings and policy line items from the zSP 

 As zSP items are ticked off, add the implementation actions and detail here 

• Keeps zSP clean and slim (ish) 

• Policy items marked as “implemented” or “not yet implemented” 

• Acts as a state of play – show it to the auditor 

 Cons 

 Auditor knows exactly where you are not compliant 

 Pros 

 Auditor knows exactly where you are not compliant 

 

 Possible states: 

 Policy item = NO / Status = UNKNOWN 

• Sad face from Audit 

 Policy item = YES / Status = UNKNOWN 

• Sad face from Audit 

 Policy item = YES / Status = NOT YET IMPLEMENTED 

• Smiley face from Audit 

 Policy item = YES / Status = IMPLEMENTED 

• “bovvered” face from Audit - aka ‘Whatever’ or even ‘meh’ 

 

 

 

 

16/50 



© Copyright TSD (UK) Ltd  2014 

zSP Essentials 

 Minimum requirement for z/OS Unix related zSP items 

 Assignment of OMVS segment for users and groups 

 UID/GID assignment scheme/table 

 Human user assignment of UID(0) 

 Acquiring “appropriate privileges”  for non-human users (e.g. Started Tasks) 

• Use of TRUSTED or PRIVILEGED in relation to this topic 

• Assignment of real UID(0), access to effective UID(0) – via BPX.SUPERUSER 

 Files/directories and File Systems 

• Ownership rules 

 How unowned files/directories are handled 

 Use of orphan USER and GROUP 

• Location of config files 

 File System or Dataset 

• /etc security 

 Especially the run commands (rc) 

• Use of ACLs 

 More likely – no use of ACLs 

• setuid and setgid bits 

 BPX.SAFFASTPATH 

 Activation (or not) of FSSEC and FSACCESS 

 BPXPRM security related values 

 FACILITY BPX.* profiles and UNIXPRIV class 

• e.g. BPX.DEFAULT.USER and NEXT 

 Use of su and sudo 17/50 



© Copyright TSD (UK) Ltd  2014 

Next Steps 

 So, you have a policy, some governance and a list of non-compliant 
elements, what next ? 

 Triage, high priority first 

• Within your budget, um.., budget ? 

• Yes, you will need a budget for the internal resource 

 Consider the 80/20 rule 

• Do the ‘do-able’ low hanging fruit 

• Make temporary exceptions for the tough stuff 

 Form a committee 

• You will need a virtual team of zEngineering resources, including: 

 z Sysprog 

 z Operations 

 z Security 

 z Information Management – DBA team 

 z Middleware/Transaction Management – WebSphere Application Server, CICS, IMS etc. 

 z Network 

• Better get a Project Manager 

 to manage the non-security resource requests 

 Run status meetings 

 Publicise success 

 Assist with change coordination 

 Better get that budget  

 

18/50 



© Copyright TSD (UK) Ltd  2014 

 

Hit List 

19/50 



© Copyright TSD (UK) Ltd  2014 

Remedial Actions (1) 

 Need to test remedial actions where possible 

 Some changes will have to be ‘gulp, buckle in’ 

 Need to roll from Testpit to Prod (“route to live”) 

 Usual approach for z changes, not news, but be disciplined ! 

 Need mixture of skills 

 Security Engineering 

 Systems Programming, Storage Admin and more 

 z/OS Unix Script skills 

• Co-opt one of the traditional UNIX team  

• If none, get a young person, they probably know how 

 Need to test rigorously 

 Obs: Curiously, rigorously and rigourousness are English, but not the converse 

 Need backout plan(s) 

 Some changes will be more comfortable if you have backups of: 

 External Security Manager DB 

 File Systems 

 Need to carefully time some of the changes 

 Especially if you have to restore DB or File Systems 

 Need to follow change process rigorously 

 As always, but even more so if that is possible 
20/50 



© Copyright TSD (UK) Ltd  2014 

Remedial Actions (2) 

 Test all that you can 

 Easier for some sites than others 

 Ensure your test platform contains the same Security DB and File Systems as your 
target system 

• No good proving your logic if the user that is tested has UID(0) on the Testpit 

• That would be no test at all 

 Need Guinea pigs 

 Both as human users and non-human users 

 Human GPs 

• Yourselves first 

• Other zEngineers next, make them feel the pain too 

 Side benefit, they are likely the ones that have the most “wrong” access 

 Non-human GPs 

• Tricky 

• Be brave 

• Select trivial ones first 

 SMTP, Healthchecker, Security reporting etc. 

• Then the non-business critical but tough 

 Automation, Monitors 

• Then the 50/50 business critical tough ones  

 Scheduler, FTP, TCP/IP and friends 

• Finally the ones with data if you have any 

 Java based Apps, WebSphere Application Server, MQ etc. 

 21/50 



© Copyright TSD (UK) Ltd  2014 

UID policy 

 Often, assignment has been ‘organic’ 

 Needs to be cleaned up 

 You really need a published scheme for UID assignment 

 Better if it is enterprise wide (Utopia) 

 Human users  

 Should be assigned according to a published scheme 

 Common practice - use an integer related to user 

• For example an employee number or other HR controlled string 

 But this is often not sustainable, integer design point was some other purpose 

• Better to just assign an integer within a range based on department 

 Prefer to separate human from non-human, so say 6 digit for humans 

 Non human users 

 UIDs for system tasks should be assigned from reserved blocks 

 Again, a published scheme 

 Typically using the numeric range of 5 digits 

 UIDs for related tasks should be within the same number range 

• For example: 

 all WebSphere Application Server UIDs between 20,000 and 29,999 

 all TWS UIDs between 32,000 and 32,999 

 etc. 

• Larger sites may have to make these brackets wider 

• Larger sites may have to consider 6 digits, so consider humans as 7 digits 
 

22/50 



© Copyright TSD (UK) Ltd  2014 

UID Actions (1) 

 ACTION: Define UID scheme 

 High priority/Minimum effort/Low degree of difficulty 

 Policy presumably says this is required 

 Remedial action 

• None, documentation/argument action 

 ACTION: Realign human users to UID scheme 

 Medium priority/Moderate effort/Low degree of difficulty 

 Policy presumably says you have to comply to scheme 

 If there are lots of challenges, may accept this for new users 

• Declare existing users misalignment as “within appetite” 

 Remedial action 

• Build list of files/directories owned by UID 

• Prepare script to ‘chown’ to new UID 

• Change UID to new UID 

• Run script to ‘chown’ 

• Logon on/activate or otherwise use 

 including FTP, HTTP, Batch submission etc. 

• Scan for old UID in files/directories  

 

23/50 



© Copyright TSD (UK) Ltd  2014 

UID Actions (2) 

 ACTION: Realign non-human users to UID scheme 

 Medium priority/Moderate effort/Medium to High degree of difficulty 

 Policy presumably says you have to comply to scheme 

 Some non-human users may be challenging 

 If there are lots of challenges, may accept this for new services only 

• Declare existing users misalignment as “within appetite” 

 Remedial action 

• Check this is “within appetite” 

• Build list of files/directories owned by UID 

• Prepare script to ‘chown’ to new UID 

• Stop related Services 

• Check the userid has NOPASSWORD (protected user) 

• Change UID to new UID 

• Run script to ‘chown’ 

• Restart related Services  

• Test every possible access point 

• Be mindful of ‘off-platform’ implications 

 For example, created files being accessed by HTTP or FTP 

 These may carry an ‘off-platform’ expectation of file UIDs 

• Scan for old UID in files/directories  

• Breath, take a well earned break 

 

24/50 



© Copyright TSD (UK) Ltd  2014 

UID(0), Superuser et al 

 Before looking at next action, a refresh on Superuser: 

 Many names, myths and misconceptions surrounding this: 

 Superuser, Root Access, su 

 Real UID() versus Effective UID() 

 RACF Trusted and/or Privileged (or other ESM equivalent) 

 Bottom line: 

 To invoke certain ‘privileged’ syscalls, a program must first acquire “appropriate 
privileges”  

 So what does that mean ? 

 GA32-0884-00 - z/OS UNIX System Services Planning (v2.r1) 

• Phrase has 9 direct references but no explanation 

 SA23-2281-01 - z/OS UNIX System Services Programming: Assembler Callable Services 
Reference (v2.1) 

• Phrase has 161 direct references, all point to section on Authorisation which states: 

“Users authorized to perform special functions are defined as having appropriate 

privileges, and are called superusers. Users with appropriate privileges are 

also those with: 

- A user ID of zero 

- RACF-supported user privileges trusted and privileged, regardless of their 

user ID” 

• Well that’s cleared that up then ! 

25/50 



© Copyright TSD (UK) Ltd  2014 

Some numbers 

 To identify which syscall requires “appropriate privilege”: 

 Read usage notes for each of: 

• the 1000+ C system calls 

• the 480+ Assembler z/OS Unix callable services  

• the 196 REXX z/OS Unix system calls 

 Usage notes often state “may require” 

 For example, getpsent() 

• To issue this for your own UID, no additional authorisation is required 

• To issue this for all UIDs, you require “appropriate privilege” 

 UID(0) real or effective, TRUSTED/PRIVILGED (or equivalent) 

 As at z/OS v1.13 (last time someone paid me to do this) 

 System calls = 32 

• Of which 11 have no SMF 80 event 

 Assembler Services = 46 

• Each of these services has two possible modules 

 REXX calls = 15 

 Just for completeness 

 System calls and assembler services that require BPX.DAEMON = 14 

 

26/50 



© Copyright TSD (UK) Ltd  2014 

Types of users with “appropriate privileges” 

 Three ways of getting there: 

 Shell, batch job or STC with a real UID of zero 

 Shell, batch job or STC with a real UID of nonzero but an effective UID of zero 

• Shell acquires effective UID(0) through the use of the ‘su’ command 

• Others acquire effective UID(0) by issuing seteuid() to UID(0) 

• Either way, must have READ access to BPX.SUPERUSER 

 Task has RACF TRUSTED and/or PRIVILEGED (or other ESM equivalent) 

• Regardless of tasks real UID  

• TRUSTED – no security checking but auditable 

• PRIVILEGED - no security checking nor auditing 

• Coded in STARTED class profile 

• Can only apply to Started Tasks 

• Generally used for Resource Managers 

 JES2, HSM, DB2 etc. 

 Some developers are not aware of  these options 

 Challenge: “I need to issue getpsent() to list all processes, not just mine” 

 Path of least resistance, document that product needs UID(0) 

• “Take a rest, phew, that was hard work” 

 End of logic path 

 This is now an SEP 

• The “S” in this is you ! 

 
27/50 



© Copyright TSD (UK) Ltd  2014 

“Not really so super user” example 

 “The user ID that is associated with the FTP server STARTED class must 
have UID 0.” – SC27-3650-03, page 741 

 z/OS v2r1 Communications Server: IP Configuration Guide 

• Similar in related Redbooks 

 My experience is that nonzero is fine, but must have BPX.DAEMON 

 Does need BPX.SUPERUSER 

• This may depend on what FTP services you use 

 Last tested on z/OS v1.r13 

 Caution 

 Real UID(0) implies many things 

 For example, number of running processes 

 Good coding can overcome this, or use of UNIXPRIV profiles 

• Not all coding is good, harsh but true 

 In response to a PMR on FTP and UID(0), IBM state: 

 “Having the server setup to use SSL/TLS with TLSMECHANISM FTP specified requires 
that the process retain FTP's ID while performing data set and file accesses under the 
user's authority.  Such context switches require SUPERUSER. TLSMECHANISM ATTLS 
does not require this. 

 Having the server setup for ANONYMOUS logins can also require SUPERUSER for the 
context switches (depending on the ANONYMOUSLEVEL specified). ” 

• By default TLSMECHANISM extension is not enabled 

• Have not had time to test if these statements prove to be ‘working as expected’ 
28/50 



© Copyright TSD (UK) Ltd  2014 

What about the rest of the TCP/IP services ? 

 In my experience 

 TCPIP itself really must be UID(0) 

 Of the remaining 22 IP related services 

 inetd, rexecd, rlogind, rshd, sshd and syslogd really do require UID(0) 

 Requirement was ‘removed’ for pagent and iked at v1.r13 

• But it wasn’t really needed from 1.7 onwards 

 15 need BPX.SUPERUSER 

 10 need BPX.DAEMON 

 Each case lacks clear explanation as to why authorisation is required 

 IBM should be petitioned to provide more clarity 

 As in the FTP example 

 That is, under what condition(s) is this elevated authority required ? 

 Good luck with that, feedback any results to me please, thanks. 

 

29/50 



© Copyright TSD (UK) Ltd  2014 

UID Actions (3) 

 ACTION: Remove human user assignment of UID(0) 

 High priority/Minimum effort/Low degree of difficulty 

 Policy presumably says this is not compliant 

• To avoid repeat, assume this for ACTIONS 

 Remedial action 

• User must justify the requirement, why do they need it ?  

• Find matching UNIXPRIV profile to satisfy the requirement (unless it is specious) 

• If Resource Owner of UNIXPRIV profile approves it, provide access 

• Assign UID from scheme, using actions previously noted 

• Remove UID(0) 

• Test 

 ACTION: Remove human user access to BPX.SUPERUSER 

 High priority/Minimum effort/Low degree of difficulty 

 No human requirement for access to BPX.SUPERUSER 

• No known IBM requirement for this today 

• But politics sometimes get in the way 

 Remedial action 

• If Resource Owner of BPX.SUPERUSER approves it, provide access 

 Preferably through emergency/break glass ID 

• Otherwise remove the access 

 

 

30/50 



© Copyright TSD (UK) Ltd  2014 

UID Actions (4) 

 ACTION: Remove non-human user assignment of UID(0) 

 High priority/Maximum effort/High degree of difficulty 

 Remedial action 

• Every current non-human user with UID(0) must be tested for requirement 

 Evaluate product documentation, then challenge 

 As seen in earlier charts, this is not trivial 

 Test each service with UID(0) and without UID(0) 

 Same for BPX.SUPERUSER and BPX.DAEMON 

• Product owner must identify the requirement, why do they need it ?  

• Find matching UNIXPRIV profile to satisfy the requirement (unless it is specious) 

• If Resource Owner of UNIXPRIV profile approves it, provide access 

• Assign UID from scheme, using actions previously noted 

• Test, test, then test some more 

 ACTION: Remove non-human user access to BPX.SUPERUSER 

 High priority/Maximum effort/High degree of difficulty 

 Many non-human users require access to BPX.SUPERUSER 

• But do not trust the documentation, test, test and test some more  

 Remedial action 

• If Resource Owner of BPX.SUPERUSER approves it, provide access 

 Preferably through emergency/break glass ID 

• Otherwise remove the access 

 Maybe schedule a week off just after the change 

 
31/50 



© Copyright TSD (UK) Ltd  2014 

BPX.DEFAULT.USER Actions 

 z/OS V1.13 is the last release to support BPX.DEFAULT.USER 

 Enough said. There are many papers available discussing this topic in detail 

 ACTION: Determine if BPX.DEFAULT.USER is in use 

 High priority/Minimum effort/Low degree of difficulty 

 Remedial action 

• Quick Check - Run bpxcheck 

 Available from RACF downloads page 

 Will tell you if you have the profile and what state you are in for remedial steps 

• If you have it defined – loop through your SMF 80 records extended relocate sections 

 Look for two bytes of 317 (x’13D’) “Indicates a default z/OS UNIX security environment is in effect”  

 Usually in  the final section – (credit to Pat Loftus for pointing this out, thanks Pat) 

 Also look for Event codes 28-58, 60-65 

 SMF unload fields xxxx_DFLT_PROCESS 

 xxxx is the prefix to the SMF unload record, such as CMOD, COWN, FACC, IOEP 

 ACTION: If BPX.DEFAULT.USER is in use 

 High priority/Maximum effort/Medium degree of difficulty 

 Remedial action 1 

• Assign a unique UID to each user and GID to each group 

• Chown all files/directories ownership to new UID/GID, some form of default owner 

 Remedial action 2 

• Use the BPX.UNIQUE.USER support to automatically assign a unique UID to each USS user and a 
unique GID for their group 

• May be ‘frying pan into the fire’ option 

32/50 



© Copyright TSD (UK) Ltd  2014 

Files and directory ownership 

 Ownership rules 

 Files/directories UID/GID ownership must be set according to policy 

 Many key system files/directories are logically owned by the zEngineering team 

• The GID is easy, use a Group that is defined as a resource owning entity 

• The UID is not so easy 

 Must be a userid that has a UID and is non-human 

 Cannot be a human because if they move on, and the userid is deleted, we have unowned 
files/directories 

 Policy should state which non-human userids should own files/directories  

 Generally a set of technical area related userids that are defined as PROTECTED 

 ACTION: Set correct files/directories ownership 

 High priority/Moderate effort/Low degree of difficulty 

 Remedial action 

• Identify the files/directories that are incorrectly ‘owned’ 

 Use scripts to list all files/directories ownership and analyse 

• Define non-human userid(s) to own files/directories 

 Defined with NOPASSWORD (protected user) 

• Define Group(s) to own files/directories 

• Build and run script to ‘chown’ files/directories to new userid(s)/group(s) 

33/50 



© Copyright TSD (UK) Ltd  2014 

Unowned files/directories  

 Unowned files/directories pose two problems 

 Performance and Security 

 In terms of security they pose a significant exposure 

 Consider the following: 

• A user has UID (45) and creates files 

• Files now have an FSP with a UID (45) 

• User is deleted, all files/directories are now unowned 

• New user is assigned UID (45) 

• New user now owns those files/directories 

 Typically caused by: 

• Removal of a user or group from ESM DB 

• Or when user has a UID re-assigned 

 ACTION: Identify and amend unowned files/directories 

 High priority/Minimum effort/Low degree of difficulty 

 Remedial action 

• Define non-human userid(s) and group to act as ‘orphan‘ file/directory owner 

 Defined with NOPASSWORD (protected user) 

• Scheduled BPXBATCH script to identify unowned files/directories 

 Use find with –nouser and –o –nogroup flags 

 Beware, this may run for a long time and perform a lot of I/O 

 Choose execution time carefully 

• Parse output to build script to ‘chown’ all unowned to ORPHAN userid/group 

• Post processing requires a manual task to identify correct owners 

 34/50 



© Copyright TSD (UK) Ltd  2014 

z/OS Unix config files 

 Many z/OS Unix using services require configuration files 

 These may be able to be stored as PDS members rather than as files 

• E.g. most TCP/IP config files 

 Securing a PDS is generally better understood and therefore likely to be more secure 
than if in a File System file 

• Additionally, securing datasets using a profile readily caters for multiple levels of access and 
multiple users/groups with access 

 ACTION: Identify config files that may be PDS member 

 High priority/Minimum effort/Low degree of difficulty 

 Remedial action 

• Resource Owner of Service to identify all config files that may be defined as PDS members 

• Co-ordinated change 

 Security Engineering to define correct DATASET profiles 

 Resource Owner of Service to move config to PDS members 

 Will generally require service stop/start 

 Documentation/change procedure updates 

 Must be tested 

 
 

 

 

 

35/50 



© Copyright TSD (UK) Ltd  2014 

Key file and directory permissions 

 There are key z/OS Unix files and directories that must be secured 

 Policy should state the most important ones 

 Should dictate the correct file and directory mode bits 

 Key directories: 

 / (root) – holds all mount points 

 /bin -  core programs, many APF or Program Controlled 

 /dev -  holds many files needed during IPL and Shell login 

 /etc - holds many key config files 

 /tmp – all users need write access 

 /var – many services need write access 

 Key files: 

 /etc/rc – run commands executes at IPL time with UID(0) privilege 

 /etc/init.options – kernels control file 

 /etc/profile – default user profile settings/script 

 Automount master and maps 

 /etc/steplib – list of steplib datasets - location depends on BPXPRMxx 

 any cron files – presume cron not used so files should be secured 

 ACTION: Ensure key files/directories have correct security 

 High priority/Minimum effort/Low degree of difficulty 

 Remedial action 

• Verify that all policy listed key files/directories are secured according to policy 

 

36/50 



© Copyright TSD (UK) Ltd  2014 

BPXPRMxx security issues 

 Several keywords have significant security implications 

 MOUNT statements with  

• NOWRITEPROTECT 

 If coded, may result in data corruption in non-GRS environment 

 No checking for multiple File System access from multiple LPARs 

• NOSETUID 

 If coded, will result in loss of extended security functions 

 Any setuid() or setgid() bits are NOT honoured, for example APF and Program Control attributes 

• NOSECURITY 

 If coded, will result in unprotected files 

 Literally, no file or directory level security 

 ACTION: Monitor mechanism to check for non-compliant BPXPRMxx 
definitions 

 High priority/Minimum effort/Low degree of difficulty 

 Remedial action 

• Implement regular scanning for these keywords in BPXPRMxx members and D OMVS,F output 

 NOTE: Be cautious about using certain parms 

 STEPLIBLIST 

• Could override search order, spoofing of own program potentially 

 USERIDALIAS 

• May be prerequisite of software stack, avoid otherwise 

 BPXROOT override 

 

 

37/50 



© Copyright TSD (UK) Ltd  2014 

Access Control Lists 

 Common feature in most UNIXs 

 z/OS Unix supports via RACF FSSEC class 

 Purpose is to provide more granular security for file access 

 Allow multiple users/groups to be granted r/w/x access to file resources 

 Overcomes limitation of a single user/group setting for POSIX security control 

 ACL is defined as an ‘appendage’ to a file or directory 

 The security data is resident in the inode of the File System containing the file or 
directory 

 In order to use ACLs 

 FSSEC class to be active 

 An ACL has to be defined 

 File System has to be mounted with security enabled 

 ACLs processed after the POSIX security bits 

 Supports a default ACL definition 

 Both a default file and default directory ACL 

 Defined at the directory level 

 In addition to the directory's own possible ACL 

 Any default will be applied to any new files/directories 

 But is not propagated to any files/directories already created 

 
38/50 



© Copyright TSD (UK) Ltd  2014 

Authors view of ACLs 

 Put simply, ACLs should not be used 

 With only the rarest of exceptions  

 Exceptions should be subject to the strictest scrutiny  

 Exceptions should require detailed business justification 

• that should be strongly challenged 

 Principle concerns with ACLs: 

 Portability of files 

 Lack of POSIX compliance 

 Disk space overhead 

 Increased performance cost of I/O 

 Inheritance behaviour not consistent 

 Audit difficulties 

 Undercutting potential increase 

 Management difficulties 

 Lack of agility 

 Virus like qualities 

• A plague on your house ! 

 

 

 

39/50 



© Copyright TSD (UK) Ltd  2014 

Cure ACLs 

 ACTION: Remove ACLs 

 High priority/Maximum effort/Moderate degree of difficulty 

• Effort depends on quantity of ACLs already in place 

 Assume Policy dictates this 

 Remedial action 

• Part 1 - Identify ACLs in batch 

 BPXBATCH using find / -acl  

• Part 2 – Convert Part 1 output to script to list ACL contents 

 REXX followed by BPXBATCH getfacl 

• Part 3 – Analyse content to determine action 

 Step can be skipped if Policy states no ACLs 

• Part 4 – remove ACLs if not justified 

• Part 5 – repeat for a ‘number’ of iterations 

 More ACLs could have been created in elapsed remedial action time frame 

 Be warned this process may take many elapsed hours, one recent example: 

• Part 1 - Identify ACLs - elapsed time 5 hours 

 Found 400,000 

• Part 2 – Convert and List contents – elapsed time 6 days 

• Part 3 – Analyse – elapsed time is “ongoing” 

 Avoid this advanced state of infection by ruling this OUT as an option 

• Localised and justified exceptions aside 

• At a minimum, do not allow inheritance (defaults) on any directory that has sub directories 

 This will minimise the damage 

40/50 



© Copyright TSD (UK) Ltd  2014 

FSSEC Class 

 FSSEC has two purposes: 

 Use of ACLs requires FSSEC class to be ACTIVE  

 FSSEC Class may be coded in LOGOPTIONS 

 These two purposes are not related, just happen to use the same Class name 

 Do not ACTIVATE FSSEC if you do not want ACLs 

 FSSEC in LOGOPTIONS 

 A Quote: 

 “Avoid trouble: Enabling all auditing on classes that control access to objects in the 
UNIX System Services file system, such as RACF DIRACC, DIRSRCH, FSOBJ and FSSEC, 
or their equivalent in other SAF security managers, severely degrades performance.” 

• WebSphere Application Server v8 Tuning Tips Infocenter 
 http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=%2Fcom.ibm.websphere.nd.multiplatform.doc

%2Finfo%2Fae%2Fae%2Frprf_tunezsec.html 

 Classic trade off between performance and security 

• Most secure system is the one that is powered down 

• Best performing system is the one with no security 

• Performance overhead = CPU = increased software bills 

 This can be significant for high z/OS Unix usage customers 

 

41/50 

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rprf_tunezsec.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rprf_tunezsec.html


© Copyright TSD (UK) Ltd  2014 

BPX.SAFFASTPATH 

 Profile reduces RACF overhead 

 Auditors don’t like it 

 When defined: 

 RACF is not called if z/OS Unix can determine that file access will be successful 

• for example a file that has permission bits of 777 

 Downside is that successful file accesses cannot be audited 

 Performance gain can be significant for high File System usage customers 

• E.g. WebSphere Application Server 

 ACTION: Implement BPX.SAFFASTPATH if Policy caters for it 

 Medium priority/Minimum effort/Minimum degree of difficulty 

 Remedial action 

• Change must be loaded via an IPL or refresh of Kernel 

 SET OMVS=xx 

 Alternative ACTION: Negotiate policy change for BPX.SAFFASTPATH 

 Medium priority/Moderate effort/Moderate degree of difficulty 

 Remedial action 

• Start negotiations with the auditor(s) 

 

 

42/50 



© Copyright TSD (UK) Ltd  2014 

Summary 

 z Security Policy covering z/OS Unix is key 

 Resources will be needed to implement remedial actions 

 Budget and personnel 

 UID(0) 

 for humans, remedy is straight forward and easy 

 for non-humans, remedy is bent and complex 

 BPX.SUPERUSER has to be removed from human users 

 Files and Directories 

 Unowned files and directories are a serious security exposure 

 Identifying Resource Owners can be complex, consider a proxy owner/authoriser 

 Config files in a PDS member are preferred 

 Access Control Lists are a very bad idea 

 Testing is essential 

 Guinea Pigs are essential 

43/50 



© Copyright TSD (UK) Ltd  2014 

 

Backup: 
More on ACLs 

44/50 



© Copyright TSD (UK) Ltd  2014 

Managing ACLs 

 ACLs are listed with 'getfacl' 

 ACLs created and modified with 'setfacl' 

 Input to setfacl can be supplied in a file 

 Authorisation: 

 Superuser 

 owner of the file 

 READ permission to the UNIXPRIV profile SUPERUSER.FILESYS.CHANGEPERMS 

45/50 



© Copyright TSD (UK) Ltd  2014 

ACL POSIX compliance 

 Use of ACLs is not POSIX compliant 

 IBMs implementation allows an ACL to both grant and restrict authority 

 This breaks the compliancy 

 Ensure you have no contracts which require POSIX compliancy in terms of 
data processing and data holding 

 Typically a problem for American institutions 

• Due to their need to transact business with the US Defence Department 

 The US Defence Department’s requirement for POSIX compliancy is due to their 
adoption of Federal Information Processing Standards FIPS 151-2  

• http://www.itl.nist.gov/fipspubs/fip151-2.htm   

 IBM document their compliance statement in z/OS Unix manuals 

 "According to the X/Open UNIX® 95 specification, additional access control 
mechanisms may only restrict the access permissions that are defined by the file 
permission bits. They cannot grant additional access permissions. Because z/OS ACLs 
can grant and restrict access, the use of ACLs is not UNIX 95-compliant.”  

• Reference is from z/OS V1R9.0 UNIX System Services Planning - GA22-7800-12 

 
 

46/50 

http://www.itl.nist.gov/fipspubs/fip151-2.htm
http://www.itl.nist.gov/fipspubs/fip151-2.htm
http://www.itl.nist.gov/fipspubs/fip151-2.htm


© Copyright TSD (UK) Ltd  2014 

Best practice for ACLs 

 Put simply, ACLs should not be used 

 with only the rarest of exceptions to this policy 

 Exceptions should be subject to the strictest scrutiny  

 Require detailed business justification that should be strongly challenged 

 The reasons for this strong position are listed in the following charts. 

47/50 



© Copyright TSD (UK) Ltd  2014 

ACL concerns (1) 

 Portability of files 

 Backup/restore and file copy processing must be executed with correct commands and 
switches to ensure porting of the ACLs 

 Difficult to achieve as default setting for most copy/backup utilities is to ignore ACLs 

 POSIX compliance 

 use of ACLs to grant access is not POSIX compliant. 

 Space 

 ACLs adds a significant space overhead 

 A recent check at a large customer revealed 600,000 ACLs covering 900,000 files 

 The space overhead was significant 

48/50 



© Copyright TSD (UK) Ltd  2014 

ACL concerns (2) 

 Performance 

 Path length of accessing files increases 

• Relative to the number of entries in each ACL 

 Read access to a file/directory that has POSIX value 777 must still be checked for each 
ACL 

• in case that ACL denies access 

 Performance problem exacerbated if the customer opts to implement file/directory 
defaults 

• Causes an ACL for every subsequent file and directory in the search path 

 Inheritance 

 Inconsistency in how inherited ACLs will be created 

• Default ACLs for files/directories are not inherited across a mount point 

 Audit 

 SETROPTS LOGOPTIONS for class FSSEC allows the auditing of the creation, 
modification and deletion of an ACL 

 But doesn't apply to default file/directory ACLs 

 Inconsistency of auditability 

 

 

49/50 



© Copyright TSD (UK) Ltd  2014 

ACL concerns (3) 

 Undercutting 

 ACLs make it possible to undercut the access granted in the POSIX settings at User or 
Group level 

 Management 

 Extremely costly to manage if defaults are used 

 As files/directories created, new ACLs are created 

 Once ACL exists it is static, no longer tied to default 

 Makes administration of ACLs a manual effort 

 Affects every ACL in existence 

 Any attempt to change user/group structure will result in many hours if not days of 
ACL analysis just to identify the ACLs that require changing. 

 Agility 

 By implementing ACLs, the data centre becomes tied to the depth of discrete 
definitions for file/directory access and has lost agility 

 

 AVOID LIKE THE PLAGUE ! 

 

50/50 


